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Abstract  

In this paper, a new explicit time-marching procedure for 
solving elastodynamic problems in the time domain is 
discussed. The procedure is designed to adapt to the 
properties of the spatially discretized model and is 
completely automated, making it highly effective for 
analyzing complex wave propagation models. The 
approach is accurate to second order, fully explicit, and 
truly self-starting, with the added benefits of adaptive 
algorithmic dissipation and extended stability limits. To 
further improve performance, the procedure also includes 
automated subdomain/sub-cycling splitting procedures. By 
automatically dividing the model domain into multiple 
subdomains based on the properties of the discretized 
problem, the procedure applies different time-step values 
while still ensuring stability and enabling more accurate 
and efficient analyses. Additionally, the procedure 
considers adaptive values for the time-integration 
parameters, which are determined based on the spatial 
discretization, to create a locally-defined self-adjustable 
formulation. This approach establishes a link between the 
applied spatial and temporal solution procedures, better 
counterbalancing their errors. The paper presents and 
discusses expressions for the adaptive time-integration 
parameters and limiting time-step values of the discretized 
domain elements. Finally, benchmark analyses are 
conducted to demonstrate the technique's effectiveness, 
taking into account theoretical problems and complex 
models, representative of real-world applications in the OIL 
& GAS industry. 

Introduction 

Wave propagation models require spatial and temporal 
discretization techniques for numerical solution. In 
practice, spatial discretization methods are initially 
considered to generate a semi-discrete time-domain 
system of equations. Finite element formulations based on 
local approximations have been successfully used in 
engineering to solve partial differential equation problems. 
However, local approximations are mostly based on 
temporal and/or spatial definition of the time-step value 
when solving equations that require time integration. 
Numerical methods are commonly used to solve time-
dependent hyperbolic equations, as their analytical 
resolution is often unfeasible. These methods use step-by-
step time integration algorithms with temporal 

discretization, which are divided into two groups: explicit 
methods (computationally effective but with stability 
restrictions) and implicit methods (may provide 
unconditional stability but are more computationally 
expensive per time step). 

A new approach for locally defined time-marching 
formulations is discussed, which combines an adaptive 
truly explicit time-integration procedure with adaptive time-
steps/sub-cycling splitting procedures, creating an 
effective time-domain solution approach [1]. The time-
steps and time-integration parameters are adaptively 
computed based on the adopted spatial discretization and 
model properties, making the formulation entirely 
automated and user-friendly. This novel method is second-
order accurate, truly self-starting, and allows for extended 
stability limits and controllable algorithm dissipation. 
Algorithm dissipation is crucial to eliminate high frequency 
spurious numerical contributions in computed responses, 
and this approach offers a way to efficiently eliminate these 
spurious frequencies. While many implicit time-marching 
procedures with dissipative properties are available, 
algorithm dissipation is also important for explicit time-
marching algorithms, as shown by previous studies [1-10]. 

In the present approach, the time-integration parameters 
are formulated to dissipate spurious high-modes, while 
maintaining the contribution of important low-frequency 
modes, resulting in an accurate dissipative time-marching 
technique. The effectiveness of the solution procedure can 
be further improved by using proper multiple time-step 
values along the model, as in the case of sub-cycling 
splitting techniques. Truly explicit approaches can 
disregard solver procedures, but the stability limit becomes 
a function of the material damping, requiring lower time-
step values for physically damped models. However, this 
work presents an efficient solution methodology for these 
challenging configurations, allowing relatively high time-
step values to be considered in these analyses. 

The methodology presented in this study has potential for 
solving problems in various fields; however, it is primarily 
focused on elastodynamic analyses and geophysical 
applications. In geophysics, it is common to encounter 
heterogeneous domains with multiple layers of various 
materials that need to be analyzed. Automatic sub-cycling 
techniques are particularly useful in this regard because 
they allow for efficient analysis of these different layers or 
media by dividing them into appropriate subdomains. 

Governing equations and time integration strategy  

The set of equations that govern a semi-discrete dynamic 
model can be expressed as: 

𝐌𝐔̈(t) + 𝐂𝐔̇(t) + 𝐊𝐔(t) = 𝐅(t) (1) 
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where 𝐌, 𝐂, and 𝐊 stand for the mass, damping, and 
stiffness matrix, respectively. The acceleration, velocity, 
and displacement of the system are represented by vectors 

𝐔̈(t),  𝐔̇(t) and 𝐔(t), respectively, while the external force 

acting on the system is represented by the vector 𝐅(t). The 

initial conditions are defined as 𝐔0 = 𝐔(0) and 𝐔̇0 = 𝐔̇(0), 
representing the initial displacement and velocity vectors, 
respectively. As this manuscript focuses on explicit 
analyses, lumped mass matrices are used to define the 
discretized model described above, as usual. This 
approach avoids the need to solve systems of algebraic 
equations when using truly-explicit time-marching 
formulations, leading to significantly more efficient 
analyses. Additionally, classical Rayleigh damping is 
considered in this paper, where the viscous damping 

matrix 𝐂 is assumed to be proportional to the mass and 

stiffness matrices of the model (i.e., 𝐂 = αm𝐌 + αk𝐊, 
where αm and αk are constants of proportionality). 

The time integration procedure discussed here is an 
extension of the first methodology presented by Soares 
[11], which proposed three truly-explicit time-marching 
procedures for the semi-discrete system of equations (1) 
using proper coefficients and chained compositions of 
stiffness and damping matrix multiplications to develop 
efficient second-, third-, and fourth-order accurate time-
domain solution procedures. As a result, the present time-
integration procedure may be defined by the following 
recurrence relationships: 

𝐌𝐕1 = ∫ 𝐅(t) ⅆt

𝑡𝑛+1

𝑡𝑛

− Δt[𝐂𝐔̇n + 𝐊(𝐔n +
1

2
Δt𝐔̇n)] (2a) 

𝐌𝐕2 = Δt𝐂𝐕1 (2b) 

𝐔̇n+1 = 𝐔̇n + 𝐕1 −
1

2
𝐕2 (2c) 

𝐌𝐕3 = Δt𝐊(μ1Δt𝐔̇n+1 + μ2Δt𝐔̇n) (2d) 

𝐔n+1 = 𝐔n +
1

2
Δt(𝐔̇n + 𝐔̇n+1 − 𝐕3) (2e) 

where Δt represents the time-step of the analysis, and 

auxiliary vectors 𝐕1, 𝐕2 and 𝐕3 are defined as indicated by 
equations (2a), (2b) and (2d). The auxiliary vector 𝐕3 is 
evaluated at an element level, taking into account the local 
features of the spatially discretized model, which are 
accounted for when locally computing the time-integration 
parameters μ1 and μ2. In this case, at the element level, a 

local vector 𝐕e is computed as 𝐕e = 𝐊e(μ̅
1
𝑒𝐔̇𝑒

n+1 + μ̅
2
𝑒𝐔̇𝑒

n), 

where the subscripts and superscripts “e” indicate that the 

related variables are defined at an element level (and μ̅
𝑖
𝑒 =

Δt μ𝑖
𝑒), and a vector 𝐕 is assembled by composing 𝐕e. 𝐕3 is 

finally computed as 𝐕3 = Δt𝐌−1𝐕, following equation (2d). 
This locally defined approach enables the specification of 
μ1 and μ2 for each element of the discretized model, 
considering local properties, resulting in a more effective 
solution procedure. 

In this work, the following expressions are considered to 
define μ1

e and μ2
e: 

μ1
e = 4(ξ

e
Ωe

max − 1)−1Ωe
max−4

+ 4ξ
e
Ωe

max−3

+ 2Ωe
max−2

 
(3a) 

μ2
e = −2(ξ

e
Ωe

max − 1)−1Ωe
max−4

− 4ξ
e
Ωe

max−3
 (3b) 

where Ωe
max

= ωe
maxΔt and ξe = αm(2ωe

max)−1 +
1

2
αkωe

max 

are defined as the maximal sampling frequency and 
damping ratio of element "e", respectively, where ωe

max 
stands for the highest natural frequency of the element. 
Expressions (3a-b) are formulated to nullify the spectral 

radius of the method at Ωe
max

, providing maximal numerical 
damping at the highest sampling frequency of the element. 
This design optimizes the formulation to reduce the 
influence of spurious high-frequency modes, allowing for 
enhanced analyses. The goal of introducing numerical 
damping is to eliminate non-physical spurious oscillations 
caused by unresolved modes. However, designing a 
dissipative algorithm that introduces high-frequency 
dissipation without affecting low-frequency modes is 
challenging. The new methodology adapts by enforcing 
low spectral radius values at the highest frequencies and 
relatively high spectral radius values at important low 
frequencies. 

As it is commonly known, when non-zero values of αk are 
used, physical damping is already incorporated at the 
highest frequencies of the model. Therefore, there is no 
need to introduce numerical damping into the analysis, and 
the values of μ

1
e = μ

2
e = 0 can then be adopted, which 

eliminates the need to evaluate equation (2d) and further 
enhances the efficiency of the solution algorithm. Thus, in 

this study, if ξe ≥ 0.222 (see [1] for further details about this 

value), numerical damping is not applied in the analysis, 
and time integration parameters are set to zero (i.e., μ1

e =

μ
2
e = 0). 

The solution algorithm described by equations (2a-e) is 
easy to implement and requires no input information from 
the user as all parameters are automatically evaluated 
based on the model's properties. The technique is self-
starting and truly explicit, requiring no treatment of any 
system of equations and only the "inversion" of the 
diagonally adopted 𝐌 matrix. The proposed time-marching 
formulation establishes a link between the spatial and 
temporal discretization procedures, allowing for better 
error balance and more accurate responses. The 
technique provides enhanced accuracy and improved 
stability conditions, with a stability limit more than 1.7 times 
greater than that of the Central Difference method (CDM). 
The limiting time-step value for each element of the 
discretized model can be established considering two 
possible configurations, depending on whether μ1

e = μ2
e =

0 or not, as indicated below: 

if  ξ
e

≤ 0.222, Δte = (2 + 21∕2)(ωe
max)−1 (4a) 

if  ξ
e

> 0.222, Δte = (ξeωe
max)−1 (4b) 

As can be seen from equations (4a-b), the proposed 
technique allows for easy estimation of the limiting time-
step value, which is not common in standard truly explicit 
approaches. This estimation is important for the automated 
subdomain divisions and adaptive computations of local 
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time-step values discussed in the next subsection. Finally, 

a minimal value of Ωe
max

 in equations (3a-b) is suggested 
to avoid excessive numerical damping when 
subdomain/sub-cycling splitting procedures are not 

considered, with a value of 21∕2 recommended. 

Sub-cycling 

Sub-cycling is a technique proposed by Belytschko et al. 
[12] that decomposes a domain into subdomains 
associated with computations at several "sub-steps". This 
approach enables an explicit time-marching solution 
without limiting the entire domain to its shortest critical 
time-step value, allowing greater time-step values to be 
considered for different subdomains and enabling lower 
computational efforts. The need for using sub-cycling 
arises from problems where meshes include both relatively 
stiff and soft subdomains, imposing the use of an overly 
small time-step value for the entire model. Therefore, to 
enable an efficient computational approach, one must 
solve these regions separately, considering different time-
step values for different subdomains of the model, and 
connect the computed responses from these subdomains 
together. However, excessive subdivisions may result in 
deterioration in both accuracy and efficiency, highlighting 
the importance of proper sub-cycling considerations. 

This study proposes an automated algorithm to subdivide 
the model domain, aiming to enhance efficiency without 
compromising accuracy [13]. The algorithm performs a 
controlled subdivision of the domain, computing and 
assigning a time-step (Δt) for each node of the model. The 
procedure consists of grouping elements that can share 
the same Δt, based on their stability limit. By doing so, the 
model is divided into subdomains, and different time-step 
values are assigned to each subdomain, allowing for an 
efficient and accurate solution. In this context, the following 
sequence of commands is here employed to automatically 
define this subdomain division: (i) calculate the limiting 
time-steps of all elements (i.e., Δte) following equations 

(4a-b), finding the smallest Δte of the model (i.e., Δte
min, 

where Δte
min = min(Δte)), which is the basic time-step for 

the proposed controlled subdivision of the domain; (ii) with 

Δte
min defined, calculate subsequent time-step values as 

multiple of the power of 2 of this minimal time-step value 

(i.e., calculate Δti, where Δti = 2(i−1)Δte
min); (iii) associate 

each element to a computed time-step value (i.e., to Δti, 

where  Δti ≤ Δte ≤ Δti+1 and i indicates the subdomain of 
that element); (iv) associate a time-step value (i.e., 
associate a subdomain) to each degree of freedom of the 
model considering the lowest time-step value of its 
surrounding elements. 

After implementing the subdomain division and sub-cycling 
algorithm, it may be necessary to interpolate the 
displacement and velocity values near the boundaries of 
the time-step subdomains. This work employs the following 
expressions for these interpolations: 

𝐔(t) =
1

2𝛥𝑡
(𝐔̇n+1 − 𝐔̇n)𝑡2 + 𝐔̇n𝑡 + 𝐔n (5a) 

𝐔̇(t) =
1

𝛥𝑡
(𝐔̇n+1 − 𝐔̇n)𝑡 + 𝐔̇n (5b) 

where 𝑡 is the current increment of time (0 ≤ 𝑡 ≤ 𝛥𝑡) for the 

focused subdomain and ∆𝑡 is the time-step value of the 
degree of freedom being interpolated, which is related to 
the neighboring subdomain. A similar expression to 
equation (5b) is used to interpolate 𝐕1, if required, based 
on equation (2b).  

Numerical applications 

This study examines the performance of the proposed 
solution procedure using two elastodynamic models. The 
first model is a heterogeneous rod composed of two 
materials, for which analytical solutions are available, 
allowing to evaluate the accuracy of the proposed 
technique. The second model is a synthetic model with 
degrees of complexity similar to real geological 
applications, demonstrating the efficacy of the proposed 
methodology for analyzing large geophysical problems, 
such as those encountered in the OIL & GAS industry. 
Specifically, this study considers the elastic 2DEW model, 
which features multiple layers with varying properties and 
large salt regions, representing complex configurations of 
elastodynamic wave propagation. 

The results obtained from the proposed novel adaptive 
formulation, with (New/sub) or without (New) considering 
multi-time-steps/sub-cycling splitting procedures, were 
compared to those of standard explicit approaches. These 
approaches included the classic Central Difference (CD) 
method, the explicit generalized α (EG-α) method 
developed by Hulbert and Chung [14] (where ρb = 0.3665 
was adopted, as this value is recommended by the authors 
to minimize period elongation errors), and the Noh-Bathe 
(NB) method [2] (where p = 0.54 was adopted, as 
recommended by the authors). For each technique, the 
maximum possible time-step value for stability was applied 
(taking into account an element level evaluation) to allow 
for more efficient analyses to be conducted for each 
approach. 
 

 
Fig.1 – Sketch of the heterogeneous rod. 

 

Application 1 

In this study, a rectangular heterogeneous rod consisting 
of two different materials is analyzed. A schematic of the 
rod is presented in Figure 1, and the physical properties of 
the materials used to compose each half of this 
heterogeneous model are described in Table 1. Five 
different heterogeneous configurations are considered in 
this section, and in all of them, material 1 is assumed to be 
lead, while material 2 can be lead (model 1 - homogeneous 
model), copper (model 2), steel (model 3), alumina (model 
4), or carbon nanotubes (model 5). A structured finite 
element mesh composed of 20,000 linear square elements 
is utilized to spatially discretize the model. The analytical 
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solution for the horizontal displacements of the rod is 
known in the literature and can be found in [1], allowing for 
proper evaluation of the accuracy of the proposed solution 
technique. 
 

Table 1 – Properties of the materials for the second example 

Material 
Young's 
modulus 
(M𝑃𝑎) 

Density 
(𝐾𝑔/𝑚3) 

Dilatational 
wave speed 

(𝑚/𝑠) 

Lead 14 11340 1111 

Copper alloys 135 8300 4033 

Steel 200 7860 5044 

Alumina 390 3900 10000 

Carbon nanotube 1000 1700 24253 

 

Table 2 presents the performances of the selected time-
integration techniques for both the adopted heterogeneous 
model and the homogeneous model 1. The new 
methodology provides the smallest errors and CPU times 
for the performed analyses, and better results are obtained 
when multi-time-steps/sub-cycling splitting approaches are 
considered, indicating that the proposed formulation is 
highly accurate and efficient. Additionally, the new 
technique becomes more effective when it can adapt to the 
properties of the model, as in the referred heterogeneous 
models. For the selected heterogeneous models, two time-
marching subdomains are always established, and the 
time-steps of neighboring subdomains differ up to 16 times 
in this example. Nevertheless, good responses are always 
provided, illustrating the robustness of the proposed 
technique. 
 

Table 2 – Performance of the methods for application 1  

Model Method Δt (10−6s) Error 
(10−2) 

CPU 
Time (s) 

 
 

1 

CD 7.199 (1.10) 0.18 (1.80) 17 (1.21) 

EG-α 6.487 (1.00) 0.16 (1.59) 19 (1.35) 

NB 13.480 (2.07) 0.17 (1.65) 21 (1.50) 

New 12.912 (1.99) 0.10 (1.00) 14 (1.00) 

 
 

2 

CD 1.884 (1.10) 6.31 (5.00) 23 (1.43) 

EG-α 1.698 (1.00) 6.24 (4.95) 24 (1.50) 

NB 3.528 (2.07) 6.14 (4.87) 26 (1.62) 

New 3.386 (1.99) 2.23 (1.77) 20 (1.25) 

New/sub 6.770b (3.98) 1.26 (1.00) 16 (1.00) 

 
 

3 

CD 1.506 (1.10) 11.17 (2.97) 29 (1.93) 

EG-α 1.357 (1.00) 10.72 (2.85) 31 (2.06) 

NB 2.821 (2.07) 10.66 (2.83) 32 (2.13) 

New 2.707 (1.99) 4.60 (1.23) 25 (1.67) 

New/sub 1.082b (7.97) 3.76 (1.00) 15 (1.00) 

 
 

4 

CD 0.759 (1.10) 16.96 (4.79) 44 (2.31) 

EG-α 0.684 (1.00) 17.00 (4.80) 52 (2.73) 

NB 1.432 (2.07) 16.67 (4.71) 54 (2.84) 

New 1.365 (1.99) 5.57 (1.57) 37 (1.94) 

New/sub 10.920b (15.96) 3.53 (1.00) 19 (1.00) 

 
 

5 

CD 0.313 (1.10) 25.80 (4.90) 77 (2.85) 

EG-α 0.282 (1.00) 25.82 (4.90) 92 (3.40) 

NB 0.586 (2.07) 25.98 (4.93) 96 (3.55) 

New 0.563 (1.99) 8.56 (1.62) 69 (2.55) 

New/sub 9.008b (31.94) 5.26 (1.00) 27 (1.00) 

Relative values are provided in parenthesis; b Maximal Δt in the 
multiple time-steps analysis. 

 

Application 2 

The second example considers a geophysical model 
generated in SEAM, simulating a realistic soil of a salt 
region in the Gulf of Mexico, complete with stratigraphy in 
a scale that includes oil and gas reservoirs. All model 
properties are derived from fundamental rock properties, 

which have subtle contrasts at the boundaries of the 
macro-layer, generating realistic synthetic data. The 
distribution used, Elastic Earth Model, is the model used 
for simulating the elastic data set, Elastic 2DEW Classic 
[15]. The distribution used has 3 binary files for density, P-
wave velocity (dilation), and S-wave velocity (shear). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.2 – Geological model: (a) layers illustrating its different 
physical properties; (b) layers illustrating the computed 
different time-marching subdomains; computed time-

integration parameters (c) μ1
e and (d) μ2

e. 

 
The model depicted in Figure 2a has an area of 35 km x 15 
km and is discretized by a mesh of 717,139 linear 
triangular elements. A pulse is applied to its surface at x = 
17.44 km. In the model, the salt regions are described 
using finer discretizations than the earth layers. Four Δt 
subdomains were automatically established, as shown in  
Figure 2b. Figures 2c and 2d illustrate the μ1

e and μ2
e 

parameters calculated throughout the model. 
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Table 3 shows the performance of the selected time-
integration techniques for the given model. Once again, the 
new methodology outperforms the selected standard 
procedures in terms of CPU time, describing a more 
efficient approach. Displacement results (displacement 
modulus), computed using the explicit generalized α 
method and the new technique with multi-time-steps/sub-
cycling splitting procedures, are presented in Figs.3 and 4, 
respectively. These figures reveal that the new 
methodology provides results similar to those of the EG-α, 
with the added benefit of fewer spurious oscillations in its 
computed responses. The logarithmic scale, which is 
adopted in these figures, aids in visualizing the referred 
displacement results. 
 

 
(a) 

 
(b) 

 
(c) 

Fig.3 – Computed results for the EG-α, at different time 
instants: (a) 1s; (b) 2s; (c) 3s. 

 

Conclusions 

An explicit time-marching technique that incorporates 
subdomain/sub-cycling splitting procedures is discussed in 
this study for solving elastodynamic models. The time-
steps and time-integration parameters of the method are 
locally and automatically determined based on the spatially 
discretized model's characteristics. The features of the 
discussed formulation may be summarized as follows: (i) it 
is a truly-explicit approach that does not require dealing 
with a system of equations, as lumped mass matrices are 
utilized; (ii) it is based on simple single-step displacement-
velocity relations, making it a truly self-starting formulation; 
(iii) it allows for advanced controllable algorithmic 
dissipation by considering optimized, adaptive, locally 
computed parameters; (iv) it establishes a connection 
between the adopted temporal and spatial discretization 
methods, enabling better balancing of their errors; (v) it 
provides extended stability limits that may not be reduced 
by the introduction of physical damping, as in typical truly-
explicit analyses; (vi) it is entirely automated and simple to 
apply, requiring no user effort or expertise; (vii) it is highly 
accurate and efficient, providing more effective analyses 
when combined with the developed subdomain/sub-
cycling splitting procedures. 

As it is illustrated in this paper, the discussed technique is 
highly versatile and produces effective results, consistently 
outperforming traditional time-marching methods. The 

Table 3 – Performance of the methods for application 2  

Method Δt (10−3s) CPU Time (s) 
CD 2.317(1.10) 831 (3.37) 

EG-α 1.983 (1.00) 851 (3.46) 

NB 4.338 (2.07) 891 (3.62) 

New 4.155 (1.99) 673 (2.73) 

New/sub 33.146b (15.96) 246 (1.00) 

   

 
(a) 

 
(b) 

 
(c) 

Fig.4 – Computed results for the new/sub, at different time 
instants: (a) 1s; (b) 2s; (c) 3s. 
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analyzed models demonstrate the robustness of the 
technique adapting to the properties of the model, as well 
as its ability to easily handle complex and highly refined 
large-scale problems, significantly reducing the 
computational burden of their solution process. As 
described, the discussed methodology stands as an 
effective time-marching technique, making it an attractive 
option for modeling complex wave propagation problems. 
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